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ABSTRACT
Cybersecurity experts rely on the knowledge stored in databases
like the NVD to do their work, but these are not the only sources of
information about threats and vulnerabilities. Much of that infor-
mation flows through social media channels. In this paper we argue
that security experts and general users alike can benefit from the
technologies of the Semantic Web, merging heterogeneous sources
of knowledge in an ontological representation. We present a sys-
tem that has an ontology of vulnerabilities at its core, but that is
enhanced with NLP tools to identify cybersecurity-related informa-
tion in social media and to launch queries over heterogeneous data
sources. The transformative power of Semantic Web technologies
for cybersecurity, which has been proven in the biomedical field, is
evaluated and discussed.
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1 INTRODUCTION
The National Vulnerability Database (NVD) was created in 2005
as a comprehensive database of vulnerabilities, with funding from
the Department of Homeland Security. It was a continuation of
a project that started in 1999, the Internet Categorization of At-
tack Toolkit (I-CAT).1 The NVD is a set of “databases of security
checklist references, security related software flaws, misconfigu-
rations, product names, and impact metrics2”. The NVD does not
perform security checks. Rather, once a vulnerability is discovered
and assigned a unique identifier in the Common Vulnerabilities
and Exposures (CVE) dictionary, the NVD analyzes it to assign it a
class, a severity score, and to specify the systems it may affect.

The NVD database has had a positive impact on the cybersecurity
research community, but in the two decades that have elapsed since
the effort began several limitations in its scope, methodology, and
functionality have come to light. Part of the problem lies in the sheer
volume of vulnerabilities that are discovered and reported, which
overwhelms the resources available for their analysis, classification,
and dissemination [4]. Moreover, the NVD is eclipsed and outrun
by the torrent of information about vulnerabilities that now runs
through Twitter, Stack Overflow, Reddit, and other social media
channels (including the old-fashioned web page posting a security
advisory).

We propose a new approach to the public disclosure of vulnera-
bilities that removes the limitations of the NVD, while at the same
time building on its strengths. Several new developments in the
field of cybersecurity and related technologies have matured to the
point that we can move beyond the NVD by bringing the full force
of the Semantic Web (enhanced with NLP methods) to it. Following
Hitzler [14], we conceive of the Semantic Web not as an artifact (i.e.
a collection of hyperlinked WWW pages with semantic markup),
but as an ensemble of technologies that allow for information to
be shared, searched, and reasoned upon over the internet. This
approach will give vulnerability managers and other members of

1I-CAT was initially an access database of attack scripts. Attack scripts are necessary
to probe the safety of a system, but they were as difficult to obtain as they were
ubiquitous. The purpose of I-CAT was to facilitate the acquisition of attack scripts on
behalf of security professionals so that they could conduct their trade [20].
2https://nvd.nist.gov/general
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incident response teams better and faster access to the information
they need to perform their jobs. For instance, easier sharing and
search can, e.g., benefit faster adoption of patches for end users who
depend on social platforms, while integrated reasoning can enable
non-obvious conclusions (e.g. regarding dependencies) through a
dialog with end users on the need and ease of patching.

To be explicit, our contribution is the use of the Semantic Web to
augment existing data on vulnerabilities predictions, identification,
an remediations. We use linguistic tools to augment the technical
information extant in vulnerabilities databases such as the NVD and
CVE. This also simplifies the tasks of analysts by bringing together
information from various sources into one easily digested system.

At the core of any Semantic Web-based system is an ontology: a
formal (that is, explicit, consistent, and complete) representation
of the accumulated knowledge in a particular field in the form of
entities and classes with their relations, and that allows for implicit
knowledge to be extracted by reasoning. Our ontology uses the
structured information in the NVD as a starting point, expanding
its coverage in different directions. We will argue that a well-crafted
ontology can incorporate many of the improvements to the NVD
that have been proposed in the recent literature. As a proof of
concept, we introduce TRONTO, a system built around an ontology
of cybersecurity, which retrieves vulnerability-related information
from social media and supports queries.

The paper is structured as follows: Section 2 reviews recent
literature on the strengths and weaknesses of the NVD, using it
to frame our proposal. Section 3 discusses the use of ontologies in
the Semantic web, the development of ontologies for cybersecurity,
and our method of lifting the static information in the NVD to
create the ontology at the core of TRONTO. Section 4 discusses
three ways in which TRONTO extends the information in the NVD:
I) Inferring new classes from the information already present in
the database by means of a reasoner, II) enriching the relations
among the concepts in the NVD, in particular to take care of the
problem of the insecure dependencies [24], and III) expanding the
conceptual coverage from vulnerabilities and configurations to
threats, countermeasures, and other concepts and relations based
on a risk model of cybersecurity [13, 32]. Section 5 introduces the
methods we follow to link the instances on the ontology (which
are individual CVE entries) to tweets and posts in social media,
the procedures we follow to filter out and classify the stream of
social media posts about cybersecurity, and the methodologies for
querying the results of the searches. Even though we are currently
employing text-based methods for these tasks, the potential for
semantic-based methods in queries is apparent, and they lead to
future work as well. In section 6 we discuss the results and lay the
groundwork for future research.

2 LITERATURE REVIEW AND FRAMING OF
OUR PROPOSAL

The NVD is the largest public repository of information about
known software vulnerabilities. The cybersecurity research com-
munity has used the information it contains to examine the factors
that contribute to the severity of a vulnerability [11, 15], or to try
to predict when new vulnerabilities will emerge [36, 37]. And while
security experts (a.k.a. “ethical hackers”) use the information in the

NVD to test the security of systems, the NVD does not seem to be
a useful tool to train developers and engineers to craft more secure
code [23].

The NVD has an important role to play in Vulnerability Manage-
ment, one of the service areas that a Computer Security Incident
Response Team (CSIRT) may attend to [10]. One of the possible
functions of a CSIRT is the discovery, analysis, disclosure, and
management of vulnerabilities. The CSIRT identifies vulnerabili-
ties when responding to an incident, from public sources such as
vendor announcements and social media, or from its own research.
A CSIRT may also be required to disclose a vulnerability as part of
its management services. The NVD provides a template for such
disclosures, which may include “information such as an overview
or description, a unique vulnerability identifier, impact, severity, or
CVSS score, resolution (remediation or mitigation), and supporting
references or materials.”

Once a new vulnerability is discovered, it is given a unique
identifier in the form of a CVE designation. Trained analysts enrich
the CVE entry withmetadata about the vulnerability’s classification,
potential targets, severity score, etc. All of this information is stored
in the NVD. But the NVD is a victim of its own success. Having
farmed out the discovery of vulnerabilities to a community of cyber-
sleuths, it cannot keep up with the volume of vulnerabilities that
are discovered and reported [4]. One proposed solution is to let
the same agencies that first identify vulnerabilities also contribute
some of the associated metadata.

The structured information contained in the NVD is also an
important component of current efforts to increase transparency
in the production and commercialization of software. A Software
Bill of Materials (SBOM) would require developers to keep a record
of the supply chain that provides upstream products (e.g. libraries)
packaged with their systems. “An SBOM is effectively a nested
inventory, a list of ingredients that make up software components.
An SBOM identifies and lists software components, information
about those components, and supply chain relationships between
them.” [22]. An SBOM should provide users with reliable knowledge
about the safety of the systems they use, and for that it depends
on external sources, like the NVD. Currently, the NVD provides
information about vulnerabilities and the products they affect, in
the form of a Common Platform Enumeration (CPE) dictionary. By
superimposing this information on a complete supply chain tree, an
SBOM would provide “a means by which to convey the transitive
exploitability or exposure of a vulnerability along supply chains.”
But this approach highlights another important limitation of the
NVD in its current form, which is that it relies on external devices
to solve the problem of insecure dependencies.

A recurring theme in the literature evaluating the strengths of
the NVD is whether or not it provides metrics that are useful for the
prioritization of vulnerabilities in the management process. Because
the cost of patching or mitigating all vulnerabilities in an enterprise
is prohibitive and inefficient, security teams must have a way to
decide which vulnerabilities to address first, and what kind of action
to take. The NVD provides a CVSS score, which can be taken as
an index for prioritization, but this approach has been criticized as
highly ineffective [17, 30]. One approach, the Stakeholder-Specific
Vulnerability Categorization (SSVC), replaces the severity scoring
in CVSS with a qualitative evaluation of factors that weigh into

60



Beyond NVD: Cybersecurity meets the Semantic Web. NSPW ’21, October 25–28, 2021, Virtual Event, USA

prioritization for vulnerability management (e.g. attack surface,
exploitability, etc.), and organizes these factors into a decision tree
to arrive at a conclusion as to which vulnerabilities to address first.
In a related study, Jacobs et al. compare remediation strategies based
on CVSS scores and on the existence of an exploit “in the wild”.
They show that a balanced CVSS-based strategy still recommends
patching 31K unexploitable vulnerabilities, out of 35K patched. On
the other hand, an exploit-based strategy ends up recommending
significantly fewer vulnerabilities for patching (about 7.9K).

The NVD continues to invite researchers to probe for incon-
sistencies and gaps in its content [1, 18], to evaluate the effects
of these inconsistencies, and to provide solutions. But, to sum up,
any comprehensive approach to revamp the NVD must fulfill the
following goals: a) Reduce the involvement of analysts in extracting
metadata from the documents that describe the vulnerabilities, b)
Expand the information around each vulnerability and the systems
they affect to make it easier for the response teams to do their job,
in particular discovery and reporting, and patching and mitigation,
c) Integrate the NVD with other sources of information that are
critical to achieve security objectives, such as supply-chain struc-
ture and existence of exploits, d) Replace unreliable elements of
the NVD (such as the CVSS), which may be misleading, with better
measures and methods. We suggest that replacing the database for-
mat currently adopted by the NVDwith a Semantic Web framework
can go a long way to achieving those goals.

The Semantic web offers a dynamic way to organize information
from heterogeneous sources in a way that overcomes the limitations
inherent in text-based approaches. To achieve this goal, knowledge
is represented in an ontology or knowledge graph. An ontology
represents knowledge as a taxonomy of classes and instances, con-
nected by properties and relations. There are crucial features of
ontologies that solve some of the shortcomings of the NVD, since
ontologies have known advantages over databases. First, ontologies
are designed to integrate with each other. An ontology that relates
vulnerabilities to software components could easily import an on-
tology that models knowledge about supply chains in software
systems, to solve the problem of insecure dependencies. Second,
ontologies can be reasoned upon to check for consistency and to
infer implicit knowledge. If the qualitative factors that are com-
puted by decision trees in prioritization models are formalized as
relations with vulnerabilities in their range and datatypes in their
domain, then we can let a reasoner figure out if a vulnerability
should be patched or not. 3 Third, ontologies support semantic-
based searches, as opposed to textual-based searches. This makes
it easier to report and retrieve information, since there are no ter-
minological confusions. In the rest of the paper we will show how
our system, TRONTO, achieves these goals.

Natural language processing techniques offer another approach
to overcome the current limitations of the NVD. In particular, many
concepts and relations that are not yet represented in the NVD
can be added to an ontological representation with the help of
3An alternative to decision trees is to use first order Boolean logic. The OWL formalism
(a standard for the creation of ontologies) has the power to construct restricted classes,
which have as their instances those individuals satisfying a logical constraint. A
disadvantage of this formalism is that it may be difficult for laypeople to understand.
But if the categorization is left to the reasoner then humans only need to deal with
the output. We leave it to future research to figure out how to model decision trees in
this way.

NLP tools. For instance, Jacobs et al. build a classifier that uses
the referenced documents in selected CVE entries as a training
corpus to be able to predict which vulnerabilities will have actual
exploits [17]. This is a very suggestive approach. We will show
that, by associating CVEs with texts from different sources (CVE
references, but also tweets, social media posts, etc.), we can build
categorized corpora that have strong predictive power, and can
assign CVEs to their CWE class, score them on the CVSS index, and
more. That is, we can leverage the knowledge that analysts have
already stored in the NVD to automate the analysis of future CVEs,
reducing the amount of effort on the part of analysts and solving
the bottleneck problem. Ultimately, we would like for vulnerability
management teams to be able to extract the information they need
directly from the stream of online text. The ontology would run
in the background, serving the purpose of finding semantically
relevant documents. NLP tools come in at this point to query the
documents, also helping security management teams in researching
vulnerabilities. Importantly, for practitioners this would mean that
additional and more timely information is made available to them.
Linguistic models and dashboards can be employed to integrate the
information and make the input to practitioners more natural.

3 ONTOLOGIES, THE SEMANTIC WEB, AND
CYBERSECURITY

From a narrow point of view, the Semantic Web is an extension
of the World Wide Web that enhances the human-readable text of
web pages with metadata to make their content understandable to
machines. This is made possible with the help of formal languages
that represent the meaning of the data so that it can be reasoned
upon, and must therefore be based on a semantically-interpretable
logical model. Such languages are used to build knowledge repre-
sentations of the content found in the web, i.e. ontologies. But this
view of the Semantic Web as an artifact is giving way to a broader
understanding of the term, as a field of study that is “about establish-
ing efficient (that is, low cost) methods and tools for data sharing,
discovery, integration, and reuse” [14]. The methods developed
for the Semantic Web (the artifact), then, can be applied beyond
the World Wide Web to achieve efficient management and integra-
tion of information, with substantial gains over more traditional
data-management methods.

One advantage that Semantic Web technologies have over other
forms of knowledge representation (such as databases) is their abil-
ity to integrate information from multiple and often heterogeneous
sources, without human intervention [14, 16]. The WWW allows
for the sharing and integration of information by means of hyper-
linked pages, but this information is text-based and unstructured,
requiring humans to process it. To describe web resources in a
unified, non-local manner, and the relations among them, the se-
mantic web makes use of the Resource Description Framework
(RDF) language. When the resources identified in RDF annotations
are given meaning in the form of defined terms, an RDF graph is
turned into an ontology, “a model of (some aspect of) the world
[which] introduces vocabulary describing various aspects of the
domain being modeled and provides an explicit specification of the
meaning of that vocabulary” [16]. But understanding meaning is
much more than mapping text onto a hierarchy of well-defined
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terms and relations, it also involves making inferences based on
common assumptions and other forms of implicit knowledge. The
Ontology Web Language (OWL) extends the capabilities of RDF
with a version of first-order logic (Description Logic) that has con-
structors for complex classes (e.g. Boolean connectors, quantifiers,
transitive relations, cardinality constraints) and supports reasoning.
Ontologies (and their cousins linked data and knowledge graphs)
are the artifacts that make it possible for machines to understand the
content of web pages, but they do more than that. Ontologies can be
also applied to the output of social media exchanges (e.g. Twitter),
and it lends itself to very efficient semantic-based queries (using
SPARQL) with significant advantages over text-based methods.

The security model behind the NVD is based on two major
conceptual classes: configurations (i.e. applications and operating
systems) and vulnerabilities. The NVD aggregates, analyzes, and
classifies vulnerabilities that are discovered and disclosed by vari-
ous parties. Each verified individual vulnerability is given a CVE
number as an identifier. A vulnerability is, first and foremost, a bug
in a piece of code which puts the system running the code (the
configuration) at risk of being targeted by a cyberattack. Configura-
tions, then, have vulnerabilities. This conceptual model lends itself
nicely to be formalized into an ontology, with two core classes and
a core property relating them. We have built these major classes
(with their subclasses and instances) in TRONTO. The ontology,
which is written directly as an OWL document, models the relations
between two major taxonomic domains: one for configurations
of software and hardware and another one for vulnerabilities.
To build the ontology, we have “lifted” the structured information
that already exists in two expert sources: the NVD and NIST’s Com-
mon Platform Enumeration (CPE). NVD uses a slice of the Common
Weaknesses Enumeration (CWE) to classify vulnerabilities4. This
slice forms the taxonomic backbone of the Vulnerabilities portion
of the ontology (with an additional class for unclassified vulnerabil-
ities: NVDCWEnoinfo). Individual vulnerabilities (reported in the
Common Vulnerabilities and Exploits, CVE) are the instances. CPE,
on the other hand, offers a dictionary with Individual Resource Iden-
tifiers (IRI) for a vast array of computer systems and components5.
The major segments of an IRI are part, vendor, and product. Part
classifies configurations into application, operating system,
and hardware, and gives us the first taxonomic layer of the config-
urations half of the ontology. Products are the instances of this part
of the ontology. Products may have other attributes (e.g. vendor,
language, etc.) which we may choose to model as separate classes
(even though the vendor is a higher-order attribute than product, a
product is a configuration, but a vendor is not).

The two databases (NVD and CPE) are cross-linked so that for ev-
ery vulnerability there is a list of affected configurations. This allows
us to define a non-taxonomic property “has_vulnerability”, which
takes a Configuration as its domain and a Vulnerability as its range
(we also define an inverse relation “is_vulnerability_of”). There are
two datatype properties, “has_severity_level” and “has_description”,
which link a vulnerability to its severity level and its description,
respectively. The description is a string, and the severity level is a

4https://nvd.nist.gov/vuln/categories
5https://nvd.nist.gov/products/cpe

point in a scale from 0 to 4 (4 being “critical”)6. Figure 1 illustrates
the components of the ontology.

4 EXPANDING THE REACH OF THE NVD
THROUGH ONTOLOGICAL
REPRESENTATIONS

TRONTO’s content and structure are coextensive with that of the
NVD. So it is fair to ask what is gained by representing the knowl-
edge stored in the NVD as an ontology. In this section we will
discuss three ways in which a semantic representation, like the one
we get from an ontology, exceeds the functionality of a database.
This will show how the Semantic Web can improve on the current
state of our cybersecurity tools.

The first extension comes from the use of a reasoner to infer
more knowledge than what is explicitly stated in the database. OWL
gets more of its expressive power from a form of first-order logic
called Description Logic (DL). A reasoner like Pellet or HermiT
will evaluate the DL axioms of the ontology and it will infer new
statements, which will be added to the knowledge representation
(a reasoner may also find that the ontology is inconsistent). For
example, vulnerabilities are assigned a severity level in the NVD,
but applications are not directly evaluated for their safety. If an
IT technician wants to know whether an application has critical
vulnerabilities, for instance, all she can do is search for the vulnera-
bilities the application has, and check each one for its severity score.
This is a tedious and time-consuming task. But because the infor-
mation is already there, in a way, we can use the expressive power
of OWL to infer it from the classes and relations in the ontology.
OWL allows for the creation of restricted classes, that is, classes
that are defined by logical restrictions placed on them. For instance,
we can define a class of all entities that have the property “hasSever-
ityLevel” with a value of 3 (i.e. high). When conjoined with the class
of vulnerabilities, this results in a new class for vulnerabilities with
a high severity level. We do the same for critical vulnerabilities.
The code below illustrates how the classes are defined in OWL:

• class: SeverityHighVulnerability:
equivalentTo Vulnerability and hasSeverityLevel
value 3

• class: SeverityCriticalVulnerability:
equivalentTo Vulnerability and hasSeverityLevel
value 4

The membership in these classes does not need to be specified
by hand. A reasoner will take the information already existent in
the ontology (the fact that each vulnerability is assigned a severity
level) and use it to make an inference that allows it to assign the
vulnerability to the right class. But the work of the reasoner does
not stop there. We have also created a restricted class for the con-
figurations, such that it will contain all configurations that have a
vulnerability classified as CRITICAL or HIGH in severity. Now, if a
member of a vulnerability management team, a developer checking
for security issues in upstream libraries, or any other user wants
to know if an application is worthy of trust (because its code does

6 CVEs are associated with a baseScore and a baseSeverity features. CVSS scores are
mapped to qualitative severity ratings in the following way: 0.0 = None, 0.1-3.9 = Low,
4.0-6.9 = Medium, 7.0-8.9 = High, 9.0 - 10.0 = Critical. To handle our data internally,
we use a simple scale from 0 (= None) to 4 (= Critical).
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Figure 1: Diagram of the TRONTO ontology. The ontology provides a formal representation of expert knowledge. It defines
relationship between vulnerabilities and dependencies collected from structured information.

not contain severe vulnerabilities), all she needs to do is query the
ontology to see which class the application has been placed under
by the reasoner.

• class SevereRiskConfiguration:
equivalentTo Configuration and
hasVulnerability some

SeverityCriticalVulnerability or
SeverityHighVulnerability or

There is a second way in which we can use the power of the
ontological representation to enrich the content of the NVD. CVE
entries link the vulnerabilities in the NVD database to the sys-
tems affected, which are given a CPE identifier. An IT technician
or software maintainer, then, can find out which vulnerabilities
their system has by performing a simple word-based search. But
more often than not the safety of an application is a function of the
vulnerabilities that affect its dependencies, information that is not
part of the NVD or the CPE. The vulnerabilities that an application
inherits from its dependencies, then, will remain hidden from view
from the user consulting the NVD, contributing to a false sense
of security [5, 33]. In a recent study, Prana et al. [24] sampled 450
projects using open-source libraries to analyze their vulnerabilities,
looking for their types, distribution, severity, and persistence in a
period of one year. They obtained dependency information about
the projects with an industrial software composition analysis tool.

Among their results is the finding that most dependency vulnerabil-
ities persist throughout their observation period, and that it takes
3-5 months to fix the resolved ones. What this shows is that the
problem of insecure libraries remains a thorny issue that current
tools are unable to solve.

Representing knowledge about vulnerabilities in an ontology
like TRONTO may hold the key to solving the problem of insecure
libraries. First, gathering information about dependencies is notably
hard. They can be gathered from manifest files in some GitHub
repositories, or by commercial tools like the Veracode Software
CompositionAnalysis tool used in [24], but the reality is that there is
no central repository where dependencies can be found. In any case,
it is possible to enrich the “configuration” branch of the ontology
with dependency annotations, specifying a “depends_on” relation
between software products. This can be done manually, by human
curators of the ontology, or interactively by the end-users: one
way our system collects dependency information is by asking an
end-user that is interested in checking the safety of an application
to enter a list of the application’s dependencies. Over time, the
edges connecting products will grow. A query to the ontology, then,
checks not only if the application of interest has vulnerabilities, but
also whether its dependencies have them.

Moreover, the issue of the insecure libraries is a cumulative one,
since dependencies have their own dependencies. Some systems
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have the ability to report back on the chain of dependencies, but
not all do. In OWL, it is easy to define a relation as “transitive”,
and use this feature of the relation when information is retrieved.
Once the ontology has all the instances and their relations, we can
check to see if a product is vulnerable by searching through its
network of dependencies. To that effect, we define a function that
targets an application and collects all of its dependencies using
the transitive nature of the “depends_on” property by way of the
INDIRECT prefix in OWL. This function generates a list of all
the dependencies of a configuration, closed under transitivity, and
checks to see if any of the dependencies, or the app itself, are in the
domain of a “has_vulnerability” relation with a vulnerability in its
range. The ontology and the associated functions are implemented
in a web-based query system that can be used to find out the severity
level of an application.

A third way in which an ontology-based approach to security
goes beyond the coverage of the NVD is by expanding the concepts
and relations in it. Besides vulnerabilities and configurations, se-
curity is also concerned with threats, countermeasures, and other
concepts and relations. The meanings of these terms, and the re-
lations that link one to the other, are defined in “risk models” of
security. Some projects have elaborated ontologies for cybersecu-
rity based on these models. Välja et al. [32] propose to automate
threat modeling for critical infrastructure, but they use knowledge
graphs instead of OWL. Razzaq et al. [26] propose an Ontology for
attacks, while Guo and Wang [12] develop an Ontology to model
CVEs (similar to our own TRONTO). Shepard et al. [29] develop
an ontology that organizes information collected from a computer
network, in combination with general information about threats
and vulnerabilities. The purpose of the ontology (and the system it
supports) is to investigate possible avenues for attack on a particular
network.

In another recent proposal, Booth and Turner develop a Vulner-
ability Description Ontology (VDO) which, like TRONTO, builds
on the structured information collected in the NVD. [3] The VDO
incorporates interesting empirical insights from actual security re-
sponse teams, but in our opinion it is too embryonic to constitute
a true ontology. The VDO takes CVEs as the central unit, without
integrating them into a true taxonomy (CWE categories, which
we take to be taxonomic concepts in TRONTO, are represented as
optional attributes of the CVEs). While the VDO does not commit
to a formalism, ours adheres to current standards by adopting the
OWL representation, and its foundation in Description Logic. This
makes it possible for our ontology to be reasoned upon and checked
for consistency, which their ontology is not able to do. Moreover, in
addition to its ontology, TRONTO gathers information from both
technical and non-technical sources using linguistic methods to
analyze language, and allows queries. In other words, it provides a
system rather than just an ontology.

For our purposes, we find the work of Herzog et al. [13] very
useful. They develop an ontology for cybersecurity, named “Secu-
rity”, based on concepts from a risk-analysis model. The core classes
are “Vulnerability”, “Asset”, “Threat”, and “Countermeasure”, with
“Security_Goal” and “Defence_Strategy” as additional concepts. A
diagram of their ontology is shown in Figure 2:

Herzog et al. [13]’s Security ontology is written in OWL, and
is available on the web at https://www.ida.liu.se/divisions/adit/

Figure 2: Core concepts and relations in the Security ontol-
ogy

security/projects/secont/Security.owl. One of the advantages of
OWL ontologies is that they can be modified and reused, so OWL
includes functions to import the concepts and relations from one
ontology into another one. We have expanded the contents of
TRONTO by importing the classes and relations from the Secu-
rity ontology. With this setup, TRONTO + Security ontology can be
used to aggregate structured knowledge from another database: the
Common Attack Pattern Enumeration and Classification (CAPEC).
CAPEC provides “a comprehensive dictionary of known patterns
of attack employed by adversaries to exploit known weaknesses
in cyber-enabled capabilities”. CAPEC does for the “Threat” class
of the Security ontology what CWE does for the “Vulnerability”
class of the TRONTO ontology. Moreover, the Security ontology
includes a class of "Asset", which is roughly equivalent to our "Con-
figuration" class. Assets may include the diverse set of software
and hardware (e.g. servers, workstations, network devices) that an
organization needs to run in order to conduct business. These assets
may be decentralized, as it happens in a large health services orga-
nization with laboratories running diagnostics, clinical trials, etc.
Or diversified financial services institutions with many branches.
As part of their Asset Management program, an IT office collects
information about the state of the assets, including any security
risks, and deploys patches and other mitigation (counter)measures
according to security policies [31]. Asset Management Systems use
the most recent information in the CVE database to scan a system
for vulnerabilities. We would like to design our ontology to have
points of contact with Asset Management Systems to provide a
similar functionality.

Now we present a case study about the advantage of using our
ontology. Heartbleed (CVE-2014-0160) was a serious vulnerability
in the popular OpenSSL cryptographic library, a widely used im-
plementation of the Transport Layer Security (TLS) protocol. This
vulnerability allows attackers to steal the information protected,
under normal conditions, by the SSL/TLS encryption used to secure
the Internet. This vulnerability has a severity score of 7.5, and is
wide-spread across the world. According to an estimate [8], 24–55%
of HTTPS servers in the Alexa Top 1 Million websites were initially
vulnerable to this attack. Apache server, one of the most popular
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web server software that are used to host websites, are vulnerable
to this vulnerability as it employs OpenSSL.

So imagine a company is hosting its websites on the Apache
server, and the IT technician wants to measure how secure it is.
Searching “Apache” on the CVE website is a good idea, but not
enough, as it doesn’t check whether the dependencies of the Apache
server have vulnerabilities. Querying the CVE website about all
direct/transitive dependencies of Apache server is a doable task, but
it is extremely time-consuming for the IT technician since Apache
server has a large number of direct/transitive dependencies. On the
other hand, if she uses our ontology by just searching “Apache”,
our ontology will automatically fetch all the direct/transitive de-
pendencies of Apache web server since the ontology already has
information about the dependency on OpenSSL. Then, the ontology
will check whether any of those dependencies are vulnerable and, if
the severity level of any of those is high or critical (as it is the case
with CVE-2014-0160), it will infer that Apache server is a high-risk
application. Finally, it will return the result to the user in an instant.

Another benefit of using a Semantic Web approach for cases like
the Heartbleed virus is that ontologies force the research commu-
nity to clarify terminological issues. For instance, does "Heartbleed"
refer to a vulnerability, or to a threat? If threats and vulnerabili-
ties are disjoint classes, and the unique instance "Heartbleed" is a
member of both classes, the ontology would be rendered inconsis-
tent. On the other hand, there are many terms for the same object:
"CVE-2014-0160", "Heartbleed", "Heartbeat", and "SOL15159". In an
ontological representation this issue is easily resolved, since all the
names map onto the same global resource.7

5 FINDING CYBERSECURITY INFORMATION
OUTSIDE THE NVD

In the previous section we discussed three ways in which an ontol-
ogy, which is the artifact at the core of the SemanticWeb, can extend
the capabilities of a database like the NVD when we try to repre-
sent expert knowledge about cybersecurity, namely: (1) providing
additional information that is not explicit in the database but can
be inferred from existing information; (2) enriching the contents
of the database through structure that connects pieces of informa-
tion in a meaningful way, for example, supporting transitivity in
relationships; and (3) providing a framework to relate additional
information (e.g. threats, countermeasures) in a structured way.
But the real power of the Semantic Web is in the integration of
heterogeneous sources of information. In this section we discuss
our efforts to leverage our ontology to search for and query social
media threads that contain cybersecurity-related information. Be-
cause the ontology contains not just concepts and relationships,
but also links to documents with descriptions and other relevant
information about the concepts in the ontology, it serves not only
as a source of information for human consumption, but as data

7The reverse of the synonymy problem is the ambiguity (or polysemy) problem, when
the same word may map onto two distinct (and maybe related) terms or concepts.
The double sense of “Heartbleed” as either a vulnerability or a threat is an example
of a general kind of polysemy inherent in discussions about security. Linguists have
developed lexical ontologies, such as WordNet [21] [9] to deal with these issues. A
reviewer points out that the term “vulnerability” may be vague, since two analysts
may have different concepts about what a vulnerability is and how to define it. The
danger of unresolved ambiguities is that it may lead to inconsistencies in the ontology,
so this is a problem that deserves further scrutiny.

from which data-driven models can be built. Using natural lan-
guage processing techniques, these models can relate unstructured
information in the form of text from websites and social media to
concepts in the ontology. These models can help identify relevant
information as it appears, and this new information can then be
added to the ontology, possibly after human review.

NVD does an excellent job of reporting and disseminating infor-
mation about vulnerabilities, once they are discovered and analyzed,
but there may be a lag between the time of discovery and the time
of reporting [28, 38]. Moreover, while browsing through the CVE
entries may be useful for cybersecurity experts, it does not seem to
be the best way for developers and users to gain knowledge about
vulnerabilities [23]. Users and developers like to get advice on the
safety of their systems and their security practices from the web
and from social media. Stack Overflow, Security Stack Exchange,
and Reddit are some of the hubs in which people can post their
cybersecurity-related inquiries on[2, 35].

There is a growing body of literature on how to detect social
media exchanges related to cybersecurity, Tweets in particular.
Many recent approaches built classifiers for automatic mining of
cybersecurity-related information from social platforms. The per-
formance of current methods greatly improves on early attempts
at classifying cybersecurity-related social media posts, like using
keyword matching. For example, Lippman et al. [19] built Logis-
tic Regression (LR) and Support Vector Machine (SVM) based bi-
nary classifiers to extract cybersecurity-related posts from Stack
Exchange, Reddit, and Twitter, and Dionísio et al. [7] utilized a Con-
volutional Neural Network (CNN) to detect cybersecurity-related
tweets on Twitter. These approaches leverage advances in text pro-
cessing to provide information and potentially reduce the workload
of human analysts through automation.

Recent work has raised the possibility that data-driven models
built from existing information about past vulnerabilities may be
able to forecast the severity of a just-discovered vulnerability from
the chatter about it. This could alleviate information overload and
reduce the workload for analysts by providing a semi-automated
way to identify emerging threats. For instance, Zong et al. [38]
trained CNN and LR classifiers to predict the severity of a threat
based on the perceived sentiment of the tweet describing that threat.
The annotating process for the training data works as follows: For
each tweet, Mechanical Turkers annotated whether it may contain
cybersecurity threats. If a tweet is labeled with threats, the threats
are then marked as “severe” or “not severe” according to the per-
ceived sentiment of the tweet. Since the annotators are not security
experts, their judgements are more based on their limited domain
knowledge towards the sentiment, or opinion, of the tweets. Even
though the authors found that using tweets can accurately fore-
cast cybersecurity threats at least five days before the threats are
published in the NVD database, their research did not conclusively
show that perceived sentiments collected by annotators align with
expert analysis reflecting the real severity level of the issue. Fig-
ure 4 shows how well their model based on sentiment (“opinion”)
predicts high severity of a threat as rated by experts. While the
model is effective in its most confident predictions, as shown by
the high precision at 10, 20 and 50, it is substantially less precise
as more tweets are considered. As a proof-of-concept of analysis
of new unstructured information based on data already available,
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Figure 4: Performance comparison against opinion-based
prediction from previous work of identifying severe threats
with precision at k.

we instead related tweets mentioning vulnerabilities to their (now
known) severity scores. The main difference is the use of CVSS as
the training signal, instead of non-expert sentiment associated with
tweets. Our results (Figure 4, “cvss”) suggest that assignment of
severity scores for CVEs can be approximated by fully automatic
means. Given the imperfect nature of predictions based on the text
of tweets alone, there is still uncertainty associated with these pre-
dictions when going beyond the top 200 tweets the model is most
confident about, but this uncertainty is substantially diminished
compared to the model trained on non-expert opinion.

We have also examined the possibility of automatic categoriza-
tion of CVEs based on textual descriptions. In our experiments,
we used CVEs from two common types, CWE-79 (Improper Neu-
tralization of Input During Web Page Generation) and CWE-119

(Improper Restriction of Operations within the Bounds of aMemory
Buffer), and using a dataset of over 3,000 CVEs, we found that these
CVEs can be automatically categorized based only on their textual
descriptions nearly perfectly (with approximately 99% accuracy for
CVEs not used to build the classification model).

In its current state, our system integrates information from so-
cial media, which provides more up-to-date, and sometimes more
detailed information, to enhance the knowledge base in our ontol-
ogy. In response to a query about the vulnerabilities that affect a
configuration, our system deploys a list of relevant CVEs, but it
does more than that: it finds a relevant set of cybersecurity-related
tweets, and displays them to the user with more in-depth analysis.

Specifically, we process through the following pipeline to utilize
information from tweets.

• Retrieve tweets related to the software and its dependencies
that we are interested in from the last seven days.

• Run a threat existence classifier to find if a tweet is related
to cybersecurity vulnerability.

• Run a severity forecast model to predict severity scores on
tweets predicted as threats.

• Extract entities from the tweets using a named entity recog-
nition tagger.

• Integrate the tweets sorted with severity prediction scores
into the ontology and display tweets, distribution of CVE
numbers, and severity levels.

• Deploy a question-answering system so that users can easily
find information from linked web pages.

When a TRONTO query is made, the system uses the Twitter
API to retrieve tweets that are related to the affected software and
its dependencies. These tweets, however, are not necessarily about
cybersecurity issues. To filter out the tweets that are not relevant
to cybersecurity, we train a classifier (initialized with BERT [6])
on a corpus of 4,800 examples from Zong et al. [38] which were
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hand-tagged as to whether they discussed a threat or not. The
classifier achieves an accuracy of 82% on the development set (1200
examples).

Once the cybersecurity-related tweets are segregated from the
rest, we forecast the severity of the threat. Following previous
research, we assume that a CVSS score larger than 7.0 is severe,
otherwise not severe. We train a classifier (initialized with BERT)
on a set of tweets which are linked to CVEs with actual severity
scores. We get reliable results with a training sample of 1,500 tweets.
Training a text classifier initialized with BERT, we compared the
performance of prediction by training on actual CVSS scores and
annotated opinions. Evaluated by precision@k [38], we found that
with the same number of training samples (1,500 tweets), opinion-
based severity prediction is not reliable (Figure 4). In comparison,
Our system runs the cybersecurity-related tweets through the clas-
sifier, and then sorts them by their predicted scores (in the reverse
order) to be displayed to the user.

Most previous work focuses on monitoring social media such
as Twitter to detect and classify potential threats and alert users.
However, we found that most filtered tweets, which provide concise
messages regarding possible cybersecurity threats, also contain
URLs that may link to additional detailed information such as blogs
and news reports. The additional information includes affected use
cases, steps to reproduce the issue, and potential patches suggested
by the community. Such details are not specified in social media or
CVE databases, but can be very beneficial to users who can quickly
find promising solutions. To this end, we integrate an extractive
question-answering system based on a distilled version of BERT
[27, 34] trained with SQuAD [25]. For a tweet with links to external
information, users can ask questions such as “what software is
affected” and “is there a patch” to get answers easily, if these are
found in the text extracted from these links.

6 LIMITATIONS
In its current form, then, the NVD faces a couple of serious chal-
lenges: Its metrics may be out of step with the needs of the users,
and the analysts are overwhelmed by the sheer number of vulnera-
bilities they need to review. Our system proposes to mitigate these
shortcomings by a) formalizing the knowledge built into the NVD
as an ontology that can be reasoned upon and queried directly and
b) augmenting the knowledge in the NVD with a stream of infor-
mation emanating from heterogeneous sources (i.e., social media).
The danger in this approach, however, is to undermine some of
the advantages afforded by a curated database like the NVD: the
authoritative nature of the content, and the trustworthiness of the
sources of information.

A potential limitation of our approach, then, is that our system
does not perform any vetting of the external sources it reports or
uses for trustworthiness. But for that reason, and for safety’s sake,
TRONTO currently reports the tweets it finds back to the initiator
of the query. Going forward, we foresee some built-in mechanism
to ascertain trustworthiness, perhaps using some of the media-
internal available metrics (e.g., reputation score in StackOverflow,
or some kind of social network analysis of centrality of the writer

of certain tweets). 8 Social media platforms are coming up with
ways for the community to police the information that is shared
through them. But we have seen that social media can be used to
spread misinformation, often with malicious intent. A system that
relies on community-based sources of information is susceptible
to manipulation in the same way that social media is. A mature
version of our system would need to include safeguards against
malicious misinformation, and even against adversarial intrusion
into the system itself. During development, we debated whether to
use the queries themselves to serve as input to the system (adding
information about applications, vulnerabilities, and dependencies,
for instance). We decided against it, precisely because of the risk
of inserting noisy or unreliable information that could turn the
ontology inconsistent, and break down the reasoner. Until we figure
out a workable solution, opening up the system to external sources
in this way may enable an adversarial user to suppress information
or even exploit the system to “push” a specific product or patch,
with negative consequences.

The goal of a knowledge representation system like TRONTO
is not to replace the authoritative sources (i.e., the NVD), but to
augment them by linking to other sources of information. One
potential limitation of our approach is that a user will assume that
the system is in a closed, final state. But that is not the case. By
having the tweets and other sources of information presented in
a transparent way, the user can still engage in the usual social
media exchanges (re-tweeting information, contributing to online
discussions, or contacting the authors of tweets or posts directly for
further clarification, for instance). Our system leverages the power
of NLP Q&A methods to cut through time-consuming searches,
automating routine tasks to reduce the load on the users.

The target users of the system can be grouped into two classes:
a) security analysts and vulnerability hunters, whose goal is to dis-
cover, categorize, and disseminate information about vulnerabilities,
and b) developers and system administrators who are interested in
keeping programs free of vulnerabilities by adopting best practices
when writing code or applying patches. A limitation of our system
is that it can’t just replace an analyst or a developer, in part because
of the issues mentioned above. It is true that we are proposing to
emulate the work of an analysts based on a language model. But
our model will be as trustworthy as the source documents used for
training. Moreover, our system can’t yet replace the human element
in the analysis of reported vulnerabilities. But that is not our aim:
TRONTO can be used as a support system to simplify the job of the
analyst. For developers, the danger is that having a system that runs
in parallel to their work may actually increase development time
without a commensurable increase in safety. Ideally, the ontology
would run in the background, alerting the developer when potential
vulnerability has been introduced.

7 DISCUSSION
Over the last two decades, a dedicated cadre of cybersecurity ex-
perts set out to collect and organize the resources they needed to
root out malicious code and protect against nefarious attacks. The
result was a small group of databases like the NVD, containing

8https://stackoverflow.com/help/whats-reputation, https://meta.stackoverflow.com/
questions/251487/getting-to-know-stack-overflows-voting-culture
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reliable information about weaknesses, which were overseen by ex-
perts in the field. At the same time, discussions about cybersecurity
continued to proliferate on social media. And while the databases
were a good source of information for investigations about cyberse-
curity and for testing hypotheses about threats and vulnerabilities,
many users continued to rely on the advice they received in sites
like StackOverflow when they needed to evaluate the safety of their
systems.

There is a trade-off between the agility afforded by social media
discussions and the reliability of expertly-curated databases. So-
cial media may even be a few steps ahead than the databases in
predicting the emergence of the next vulnerability. The challenge
ahead is to integrate these heterogeneous sources of information
in a single knowledge-representation model. In this paper we have
shown that the technologies developed for the Semantic Web, with
an OWL ontology at its center, can do this for cybersecurity, in the
same way that it has been done for the biomedical sciences.9

For this enterprise to succeed, it is reasonable to start with the
"low hanging fruit", lifting the structured information in curated
databases like the NVD, CVE, CPE, or CAPEC to provide the classes,
relations, and instances of the ontology. Social media streams, on
the other hand, contain unstructured information, and a different
toolkit needs to be employed to integrate those sources. Fortu-
nately, the Semantic Web has also been developing techniques to
retrieve information from textual corpora, leveraging the semantic
resources provided by OWL ontologies. In the road ahead, we will
explore the benefits of substituting semantic-based methods to find
cybersecurity-related tweets and to query social media sources for
the text-based methods we tested here.
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